CE 205: Finite Element Method: Homework I

Instructor: Dr. Narayan Sundaram^{*}

January 19, 2024

- 1. [Geodesic problem in a plane]: Show that a straight line has the shortest distance between any two points in a plane.
- 2. Hamilton's principle states that for a system of particles acted on by conservative forces, among all motions that will carry the system from a given configuration at time t_1 to a second given configuration at t_2 , that which actually occurs obeys $\delta^{(1)} \mathcal{I} = 0$. Here \mathcal{I} is the functional

$$\mathcal{I} = \int_{t_1}^{t_2} \mathcal{T} - [\mathcal{U} + \mathcal{V}] dt$$

and \mathcal{T} and \mathcal{U} are respectively the kinetic and potential energies of the system. \mathcal{V} is the potential of the applied loads. Use Hamilton's principle to derive the equations of motion of the smoothly-sliding spring-mass system shown in Figure 1 below.

Hint: Here time is the independent variable and the displacements x_1 , x_2 of the two masses the dependent variables. You will thus need two independent admissible functions η_1 and η_2 in setting up the variational scheme. Find the E-L equations of \mathcal{I} .

Figure 1: Spring-mass system

3. Consider the space C^1 of first-continuously differentiable functions on an interval I. If $y \in C^1$, show that $||y||_1 \equiv \max |y(x)| + \max |y'(x)|$ defines a valid norm on this vector space.

^{*}Department of Civil Engineering, Indian Institute of Science

4. Re-derive the result that the principle of virtual work

$$\int_{V} \rho b_{i} \delta u_{i} \, dV + \int_{S} t_{i} \delta u_{i} \, dS = \int_{V} \sigma_{ij} \delta \varepsilon_{ij} \, dV$$

is a sufficient condition for equilibrium. Proceed as done in class.

5. Consider the function w(x) and the functional

$$\mathcal{I} = \int_0^L \left[\frac{EI}{2} \left(\frac{d^2 w}{dx^2} \right)^2 - q(x) w \right] dx$$

where q(x) is a given function and E, I are given constants. Apply the variational operator δ formally to derive the Euler-Lagrange equation and the boundary conditions for this functional.

6. Show that the equilibrium equations are Euler-Lagrange equations for the functional ∏, the total potential energy of a linear elastic solid. What are the associated boundary conditions? You can assume that all applied loads are conservative.

Hint: The solution of this problem becomes somewhat easier if you use $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$

- 7. Write down the total potential energy functional \prod for a linear elastic rod of length L and variable stiffness EA(x) acted on by a distributed load q(x). Use these to find the governing differential equation of the rod and the boundary conditions.
- 8. Consider the following FE interpolations for rod elements with 2 d.o.f.s

$$u^{el}(x) = \left(1 - \frac{x}{L}\right)u_1 + \left(\frac{x}{L}\right)u_2$$
$$u^{el}(x) = \left(1 - \frac{2x}{L} + \frac{x^2}{L^2}\right)u_1 + \left(\frac{2x}{L} - \frac{x^2}{L^2}\right)u_2$$

Do the shape functions in each case satisfy the three required properties? Explain.

- 9. Consider a 2-noded rod element with a tapered cross section which reduces linearly from an area 3A at x = 0 to an area A at x = L. Construct the element stiffness matrix. Assume the elastic modulus is E.
- 10. Consider a rod structure with N = 7 rod elements connected end-to-end. Depict the global stiffness matrix [K] of this system in matrix form, highlighting the zero-entries with '0' and the non-zero entries with K_{ij} (e.g. K_{11} in position (1,1)). What is the sparsity (ratio of zero entries to total number of matrix entries) of this matrix?

Derive an expression for the sparsity as a function of N and make a table of the sparsity values for N = 1, 2, 3, ... 10.