CE 205: Finite Element Method: Homework I

Instructor: Dr. Narayan Sundaram*

January 19, 2024

1. [Geodesic problem in a plane]: Show that a straight line has the shortest distance between any two points in a plane.
2. Hamilton's principle states that for a system of particles acted on by conservative forces, among all motions that will carry the system from a given configuration at time t_{1} to a second given configuration at t_{2}, that which actually occurs obeys $\delta^{(1)} \mathcal{I}=0$. Here \mathcal{I} is the functional

$$
\mathcal{I}=\int_{t_{1}}^{t_{2}} \mathcal{T}-[\mathcal{U}+\mathcal{V}] d t
$$

and \mathcal{T} and \mathcal{U} are respectively the kinetic and potential energies of the system. \mathcal{V} is the potential of the applied loads. Use Hamilton's principle to derive the equations of motion of the smoothly-sliding spring-mass system shown in Figure 1 below.

Hint: Here time is the independent variable and the displacements x_{1}, x_{2} of the two masses the dependent variables. You will thus need two independent admissible functions η_{1} and η_{2} in setting up the variational scheme. Find the $E-L$ equations of \mathcal{I}.

Figure 1: Spring-mass system
3. Consider the space \mathcal{C}^{1} of first-continuously differentiable functions on an interval I. If $y \in \mathcal{C}^{1}$, show that $\|y\|_{1} \equiv \max |y(x)|+\max \left|y^{\prime}(x)\right|$ defines a valid norm on this vector space.

[^0]4. Re-derive the result that the principle of virtual work
$$
\int_{V} \rho b_{i} \delta u_{i} d V+\int_{S} t_{i} \delta u_{i} d S=\int_{V} \sigma_{i j} \delta \varepsilon_{i j} d V
$$
is a sufficient condition for equilibrium. Proceed as done in class.
5. Consider the function $w(x)$ and the functional
$$
\mathcal{I}=\int_{0}^{L}\left[\frac{E I}{2}\left(\frac{d^{2} w}{d x^{2}}\right)^{2}-q(x) w\right] d x
$$
where $q(x)$ is a given function and E, I are given constants. Apply the variational operator δ formally to derive the Euler-Lagrange equation and the boundary conditions for this functional.
6. Show that the equilibrium equations are Euler-Lagrange equations for the functional Π, the total potential energy of a linear elastic solid. What are the associated boundary conditions? You can assume that all applied loads are conservative.

Hint: The solution of this problem becomes somewhat easier if you use $\sigma_{i j}=C_{i j k l} \varepsilon_{k l}$
7. Write down the total potential energy functional Π for a linear elastic rod of length L and variable stiffness $E A(x)$ acted on by a distributed load $q(x)$. Use these to find the governing differential equation of the rod and the boundary conditions.
8. Consider the following FE interpolations for rod elements with 2 d.o.f.s

$$
\begin{aligned}
u^{e l}(x) & =\left(1-\frac{x}{L}\right) u_{1}+\left(\frac{x}{L}\right) u_{2} \\
u^{e l}(x) & =\left(1-\frac{2 x}{L}+\frac{x^{2}}{L^{2}}\right) u_{1}+\left(\frac{2 x}{L}-\frac{x^{2}}{L^{2}}\right) u_{2}
\end{aligned}
$$

Do the shape functions in each case satisfy the three required properties? Explain.
9. Consider a 2 -noded rod element with a tapered cross section which reduces linearly from an area $3 A$ at $x=0$ to an area A at $x=L$. Construct the element stiffness matrix. Assume the elastic modulus is E.
10. Consider a rod structure with $N=7$ rod elements connected end-to-end. Depict the global stiffness matrix $[K]$ of this system in matrix form, highlighting the zero-entries with ' 0 ' and the non-zero entries with $K_{i j}$ (e.g. K_{11} in position $(1,1)$). What is the sparsity (ratio of zero entries to total number of matrix entries) of this matrix?

Derive an expression for the sparsity as a function of N and make a table of the sparsity values for $N=1,2,3, \ldots 10$.

[^0]: *Department of Civil Engineering, Indian Institute of Science

